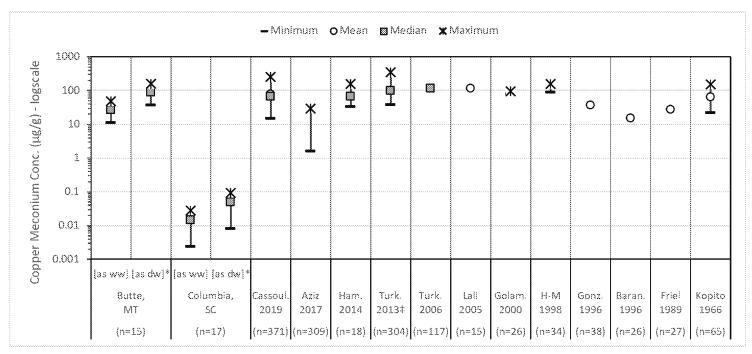
SUMMARY OF METAL CONCENTRATIONS IN MECONIUM PRESENTED IN THE LITERATURE

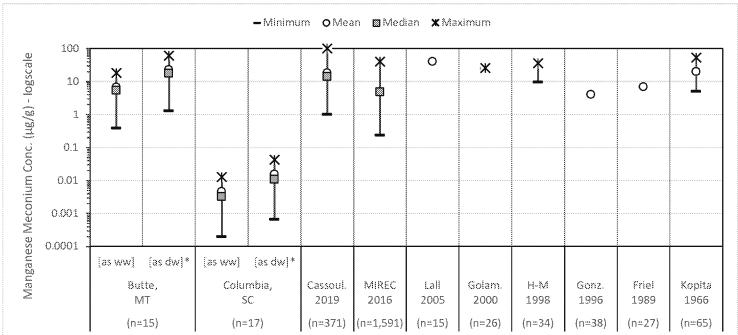
Metal	Meconium Concentration (μg/g)														
	N	Cassoulet et al. 2019*		MIREC (Arbuckle et al. 2016/ Ettinger et al. 2017)*			Aziz et al. 2017	Peng et al. 2015	Hamzaoglu 2014	Turker et al. 2013	Yang et al. 2013				
	n=	15	n=	n=17		n=371		n=1,591		n=309	n=190	n=18	n=304	n=102	
	Butte, MT Median		Columbia, SC Median		- Median	Range	Median	95th %tile	Maximum	Mean Range by Location	Control, Median (dry	Non- industrial	Surviving,	Range	
	as wet weight	as dry weight [b]	as wet weight	as dry weight [b]	iviculali	nange	Wedian	35til /8tile	IVIAAIIIIUIII	(dry wt.)	wt.)	district, Median	Median [c]	nunge	
Arsenic	0.032	0.11	<lod< td=""><td><lod< td=""><td>0.123</td><td>ND - 0.72</td><td>NC</td><td>0.02</td><td>0.55</td><td></td><td>0.03778</td><td>0.07</td><td></td><td>[e]</td></lod<></td></lod<>	<lod< td=""><td>0.123</td><td>ND - 0.72</td><td>NC</td><td>0.02</td><td>0.55</td><td></td><td>0.03778</td><td>0.07</td><td></td><td>[e]</td></lod<>	0.123	ND - 0.72	NC	0.02	0.55		0.03778	0.07		[e]	
Copper	26.311	88	0.01468	0.049	67.18	15 - 250				1.6 - 28.7		67.05	99.77		
Manganese	5.364	18	0.00325	0.011	14.31	1 - 100	4.9	15	40						
Molybdenum	0.059	0.20	<lod< td=""><td><lod< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>											
Lead	NC (0.005+)	NC (0.017+)	<lod< td=""><td><lod< td=""><td>0.022</td><td>ND - 0.35</td><td>NC</td><td>0.0085</td><td>0.48</td><td>1.2 - 14.4</td><td>0.13568</td><td>0.041</td><td>30.84</td><td>[e]</td></lod<></td></lod<>	<lod< td=""><td>0.022</td><td>ND - 0.35</td><td>NC</td><td>0.0085</td><td>0.48</td><td>1.2 - 14.4</td><td>0.13568</td><td>0.041</td><td>30.84</td><td>[e]</td></lod<>	0.022	ND - 0.35	NC	0.0085	0.48	1.2 - 14.4	0.13568	0.041	30.84	[e]	
Zinc	81.642	272	0.04334	0.14	313.8	20 - 1,500				9.5 - 160.3		244.5	190.44		

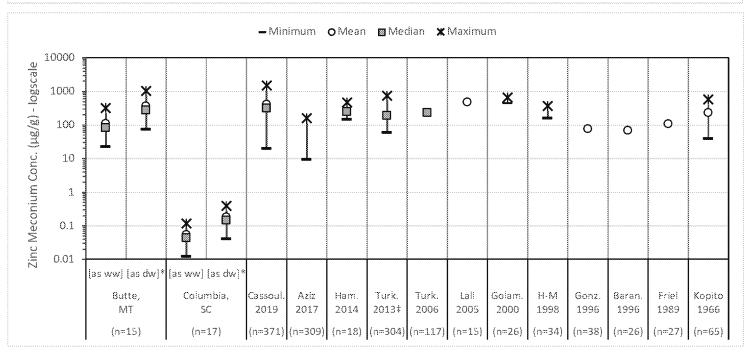
Metal		Meconium Concentration (μg/g)														
	McDermott et al. (2019) [a]				Vall et al. 2012		Turker et al. 2006	Lall et al. 2005	Ostrea et al. 2002	Golamco et al. (2000)	Haram- Mourabet 1998	Gonzalez de Dios 1996	Baranowski 1996	Friel 1989	Kopito 1966	
	n=15		n=17		n=37		n=117	n=15	n=426	n=26	n=34	n=38	n=26	n=27	n=65	
	Butte, MT Median		Columbia, SC Median		Median	95th %tile	Median	AGA Newborns,	Median	Range of means,	Mean Range by Gestational	Full-term, Mean	Control	Mean, full-	Control	
	as wet weight	as dry weight [b]	as wet weight	as dry weight [b]	(dry wt.)	(dry wt.)	iviculari	Mean (dry wt.)	Wieulali	>36wks (dry wt.)	Age	(Table III)	Mean	term [d]	Mean	
Arsenic	0.032	0.11	<lod< td=""><td><lod< td=""><td>0.0056</td><td>0.0255</td><td></td><td></td><td><lod< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.0056</td><td>0.0255</td><td></td><td></td><td><lod< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lod<></td></lod<>	0.0056	0.0255			<lod< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lod<>							
Copper	26.311	88	0.01468	0.049			116.8	115.8		79.7 - 93.6	90.3 - 154.2	36.4	15.2	27.5	64	
Manganese	5.364	18	0.00325	0.011				40.2		24.7 - 25.4	9.5 - 35.8	4.1		7.0	20	
Molybdenum	0.059	0.20	<lod< td=""><td><lod< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.145</td><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.145</td><td></td><td></td><td></td></lod<>								0.145				
Lead	NC (0.005+)	NC (0.017+)	<lod< td=""><td><lod< td=""><td></td><td></td><td>46.5</td><td></td><td>[f]</td><td></td><td></td><td>0.289</td><td>0.0047</td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td>46.5</td><td></td><td>[f]</td><td></td><td></td><td>0.289</td><td>0.0047</td><td></td><td></td></lod<>			46.5		[f]			0.289	0.0047			
Zinc	81.642	272	0.04334	0.14			234	482.8		456.1 - 667.7	156.4 - 365.4	76	68	107.5	230	

NC = not calculated due to infrequent detection

<LOD = all samples less than limit of detection


- [a] McDermott et al. concentrations reported in Table 1 were converted from ug/kg (ppb) to ug/g (ppm)
- [b] McDermott et al. concentrations adjusted from wet weight to dry weight assuming a moisture content of 70% [dw = ww / (1 0.7)]
- [c] Results reported in terms of infant body weight; adjusted based on the median body weight (2.070 kg).


 Concentrations also adjusted to reflect corrected units based on personal communication from G. Turker to C. Partridge in January 2, 2020 email.
- [d] Results reported in terms of total metal (expressed as concentration assuming the mean reported mass of stool 8.9 g)
- [e] Units reported as "ppb", but unclear if expressed in terms of mass of meconium or volume of extract
- [f] Results reported as ug/mL; would need to be converted to ug/g based on sample preparation information


⁺Median not available as only 1 sample was detect; detected concentration is reported.

^{*}Weight basis of reported concentrations not specified

MECONIUM METAL CONCENTRATIONS (LOG-SCALE)

*McDermott concentrations adjusted from wet weight to dry weight assuming a moisture content of 70% [dw = ww / (1 - 0.7)] ‡Concentrations adjusted to reflect corrected units based on personal communication from G. Turker to C. Partridge in January 2, 2020 email.

All other values are as reported in the original citation; no adjustments for wet/dry weight have been made.

--> Butte, MT meconium concentrations appear to be within the observed range based on scientific literature

--> Columbia, SC meconium concentrations appear uncharacteristically low based on scientific literature

i--> There are no established reference levels for metals in meconium; no data to establish health effects/toxicity relationships